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Abstract

The present paper describes a new method of de-

sign decomposition for structural analysis and optimiza-

tion. For this method, the structure is divided into sub-
structures where each substructure has its structural re-

sponse described by a structural-response subproblem,

and its structural sizing determined from a structural-

sizing subproblem. The structural responses of sub-

structures that have rigid body modes when separated
from the remainder of the structure are further decom-

posed into displacements that have no rigid body com-

ponents, and a set of rigid body modes. The structural-

response subproblems are linked together through forces

determined within a structural-sizing coordination sub-

problem which also determines the magnitude of any

rigid body displacements. Structural-sizing subprob-

lems having constraints local to the substructures are

linked together through penalty terms that are deter-

mined by a structural-sizing coordination subproblem.

All the substructure structural-response subproblems

are totally decoupled from each other, as are all the sub-

structure structural-sizing subproblems, resulting in the

significant potential for use of parallel solution methods
for these subproblems.

an optimum design problem is whether any solution ex-

ists to the decomposed problem. If a solution exists,
another concern is whether this solution to the decom-

posed problem is also a solution to the original prob-
lem. The present paper addresses these concerns, and

develops a formal method for solving structural-design

problems which are decomposed using substructuring.
Specifically, derivations are presented for a decom-

position of the minimum weight design process when

each design constraint depends only on the design vari-
ables and structural response of a single substructure.

Stress and local buckling constraints and certain dis-

placement constraints fall into this category of de-

sign constraint. For this decomposition method, the

structure is partitioned into substructures in a man-

ner that allows for solution of the structural response

and the structural optimization on a substructure-by-

substructure basis. The present decomposition method

also has several unique aspects that allow for efficient

computation, much of which can be done in parallel.

The theory of the decomposition method is discussed

utilizing a two-substructure example and the derivation

for an arbitrary number of substructures is presented in

the appendix.

Introduction

Nonlinear mathematical programming (NLP) is ex-

tensively used for optimal structural sizing in struc-

tural design. The most computationally efficient NLP
methods at present incorporate approximation con-

cepts, such as developed in reference 1, that require

both the structural response of the entire structure and

the response sensitivity derivatives with respect to all

the design variables. These approximation-based NLP
structural-sizing methods have been very successful and

are implemented in several commercial structural anal-

ysis codes.

Further improvements in the computational effi-

ciency of NLP structural-design methods are desired,

especially for the detail design of structures requiring a

large number of design variables and constraints. One

approach to the solution of large problems is to decom-

pose a large problem into a set of smaller subproblems.
If most of the smaller subproblems can be solved sepa-

rately and in parallel, the time required to find the opti-

mum design can be significantly reduced. By repeating

this decomposition process at the subproblem level, a

multilevel decomposition (ref. 2 and references therein)
can be obtained. One concern in the decomposition of

Theory

The method of determining the structural response

of a structure that is decomposed into substructures is

presented first. This response solution method is then

utilized in formulating a set of Equilibrium Program-
ming (EP) subproblems that determine the optimal de-

sign. The derivation which follows demonstrates the

method using two substructures which are assumed to

have a linear elastic response. The appendix summa-

rizes the method for an arbitrary number of substruc-
tures.

Decomposition of the Structural Response

The present structural-response decomposition

method has some similarity to the work presented in
reference 3 in that the present method is a substruc-

turing approach which utilizes Lagrange multipliers to

enforce compatible displacements at the interfaces be-
tween substructures. Four salient features characterize

the present method. The structural response of each

substructure is decomposed into the rigid body mo-
tions (referred to as "modes" herein) of the substruc-

ture, and displacements that have strain energy but no

rigid body motion. Secondly, an augmented stiffness



matrix is formedfor eachsubstructure.These stiff-

ness matrices are symmetric, and can be factored in-

dependently and, computationally, in parallel. Thirdly,

a structural-response coordination problem determines

the internal forces between the substructures (i.e., the

Lagrange multipliers), and the rigid body modes. The

structural-response coordination problem requires the

factored, augmented stiffness matrices of the substruc-

tures, and results in a system of linear equations with

the number of degrees-of-freedom equal to the num-

ber of shared degrees-of-freedom between substructures

plus the total number of substructure rigid body modes.

Lastly, once the internal forces between the substruc-

tures are determined, the displacements having strain

energy can be determined.

The simple wing structure finite element model in

figure 1 is utilized to demonstrate the derivation of the

present decomposition method. The model shown in

the figure is decomposed into two substructures, the

second of which has rigid body modes. Only one load-

ing condition is considered in the derivation; however,

the derivation is easily extended to multiple loading

conditions. The displacements of the entire wing for

a given loading condition are denoted by the nodal dis-
placement vector U, and the displacements of the two

substructures are given by the vectors U1 and U2. The

displacements at the interface of the two substructures
must be equal for the two substructures to be compat-

ible. Those displacements at the interfaces of the two

substructures that must be compatible are chosen in a

predetermined order with signed Boolean matrices de-

noted by B1 and B2, where the nonzero entries of B1

are equal to +1 and the nonzero entries of B2 are equal
to -1. The constraints of compatible displacements at

the interface between substructures is then expressed by

B1U1 + B2U2 -- 0. The external loading for the entire

wing is given by the nodal force vector F, and the de-

composition of the external loading is given by vectors

F1 and F2 for the two substructures. The decomposi-

tion of the externally applied nodal forces at the inter-
face nodes is arbitrary as long as the sum of the forces

applied to the interface nodes of each substructure is

equal to the actual externally applied forces.

The linear elastic structural response for the entire

wing is determined using a minimum potential energy

formulation. This response is the solution to the un-

constrained minimization problem given by

min(2UTKU-FTU)u (1)

where the first term is the strain energy of the structure,

and the second term is the work done by the external

forces. The necessary conditions for the unconstrained
minimization problem represented by statement (1)

simplify to the linear equations:

KU = F (2)

where K is the global stiffness matrix. In a substruc-

tural decomposition, a stiffness matrix can be formu-
lated for each substructure. These stiffness matrices

are relative to the substructure nodal displacement vec-

tors Ui, and are denoted by Ki. Thus a constrained

minimization problem that is equivalent to the problem

given by statement (1) and uses the substructure nodal

displacement vectors is

min [ 1 T 1 T(U_,U2) __U 1 KIUI + _U 2 K2U2

-F U, -

B1U1 + B2U2 = 0

(3)

At first glance, the constrained minimization prob-

lem given by statement (3) appears to be separable, i.e.,

the problem can be decomposed into two distinct min-

imization problems, with design variables U1 and U2,

respectively, and a coordination subproblem. However,

the minimization problem for U2 would be insoluble
due to the rank deficiency of matrix K2. Since the final

form of the design decomposition method of the present

paper will be an EP problem, another argument against

the (U1, U2) decomposition can be made based on the
sufficient conditions for the existence of an EP solution

(see ref. 4). The existence theorem for an EP solution

requires that the solution space for the EP subproblem

min (1/2 UTK2U2 - _'Tu2) where F2 here includes
U2

interface forces from substructure 1, be bounded. How-

ever U2 is not bounded as seen from the following argu-

ment. Because substructure 2 has six rigid body modes,
a rigid body matrix R2 can be formed that consists of

the six rigid body modes as column vectors. This rigid

body matrix satisfies the condition K2R2 = [0], thus
the vector R2cx 2 added to any solution to this subprob-

lem will not change the potential energy if the vector

(_2 satisfies the scalar equation FTR2c_2 ---- 0. Since

the vector a2 is not otherwise restricted, it (and there-

fore U2) is unbounded, thus the conditions for solution
existence cannot be satisfied.

From the preceding arguments, any decomposition

must explicitly account for the rigid body modes of

the substructures. A decomposition that does this

follows. Let U2 = u2 + R2a2 with the supplementary

condition l_u2 -- 0. The minimization problem given



bystatement(3) thenbecomes

min uTK1U1+ K2u2
(Ul,U2,_2)

-FTUl - FT(u2 + R2 2))

B1U1 + B2(u2 + R2a2) = 0

RTu ----0

(4)

where the condition K2R2 -- [0] has been utilized,

and the supplementary condition has been added to

the problem given by statement (3). The necessary
conditions for the structural-response problem given by

statement (4) are

KIU1 - F1 + BTA = 0

[I_2 - = 0
0

RT(F2 - BTA) = 0

BIU1 + B2(u2 ÷ R2a2) = 0

(5)

where A are the Lagrange multipliers for the first con-

straint in statement (4), D are the Lagrange multipliers

for the second constraint in statement (4), and the ma-

trix I_2 is the augmented stiffness matrix given by

I_ 2 _-- (6)

Because the matrices Bi in necessary conditions (5)

are Boolean, the Lagrange multipliers A are simply
the interface forces between the substructures. Using

the second equation in necessary conditions (5), the

condition RTK2 = [0], and the fact that the columns

of R2 are linearly independent, the third equation

in necessary conditions (5) implies that the Lagrange

multipliers p are equal to zero.

Two structural-response EP subproblems that are

implied by necessary conditions (5) are those with nec-

essary conditions

K1U1 = F1 - BTA (7)

and

I_ 2 (8)

which are solved for U 1 and (u2,/_), respectfully. The

structural-response coordination EP subproblem that
determines A and c_2 is obtained by substituting the

solutions of equations (7) and (8) into the last two

equations in necessary conditions (5)

M =

B1K11Fl+

- R2TF2

loT] T (9)

where the matrix M is given by

M

BIK11B1T÷ '

[B2 I [0] ]I_21 [B2 I [01 ]T I -B2R2

I
' [0]-(B2R2)T I

(lo)

The EP subproblem with necessary conditions given

by equation (8) includes the constraint that u2 has no

rigid body modes. This constraint essentially bounds

the solution space, and thus satisfies the requirement
for existence of a solution. The existence of a unique

solution to equation (8) is guaranteed_from the linear
independence of the columns of matrix K2 which results

from augmenting the stiffness matrix K2 with the rigid

body modes R2 that are in its null space. Thus, the

structural response (i.e., nodal displacements) can be

solved using the following steps: 1) factor the matrices
K1 and K2 that are used in equations (7) and (8); 2) use
these factored matrices to formulate the matrix M and

the right hand side of equation (9); 3) solve equation (9)

for A and (_2; and 4) solve equations (7) and (8) for U1

and u2, respectively.

Structural Optimization with Constraints Local
to the Substructures

In this section, the structural optimization problem

is decomposed into a set of EP subproblems that are

used to perform the optimization, and the related struc-

tural analysis, of each substructure. Only structural-

sizing design variables, herein termed sizing variables,

such as plate thickness or beam section properties, are
considered in the present derivation. Also, the present

derivation only considers constraints local to the sub-

structures, that is, a constraint relation must explic-

itly depend on the sizing variables and structural re-
sponse of only one substructure. The two-substructure

wing example from the previous section will be used

to demonstrate the present method of decomposition;

however, this method is extended to multiple substruc-
tures in the appendix. The decomposition is derived

from the necessary conditions of a simultaneous anal-

ysis and design formulation (ref. 5). In the present

3



simultaneousanalysisand designformulation,mini-
mumweightis the designgoal,both the structural
displacementsandthe sizingvariablesareutilizedas
designvariables,andtheoptimizationconstraintsare
theequationsgoverningstructuralresponse(treatedas
equalityconstraints)aswellastheusualinequalitycon-
straintsthatensurethatthedesignmeetsthestrength,
buckling,andotherdesignrequirements.Thepresent
methodhasthefollowingfeatures:1)theoptimization
of eachsubstructureis independentandcanbedonein
parallel(althoughtheoveralloptimizationprocedureis
still iterative);2) theresultingdesignisoptimal;3) the
objectivefunctionof eachsubstructureoptimizationis
theweightofthesubstructureplusa penaltytermde-
rivedfromanstructural-sizingcoordinationsubprob-
lem;4) thestructural-sizingcoordinationsubproblem
isamatrixequationthatusesthesamematrixM asin
thestructural-responsecoordinationsubproblem(equa-
tion (10));and5) eachsubstructureoptimizationde-
pendsdirectlyononlythesizingvariablesanddisplace-
mentsofthesubstructurebeingoptimized.

Thelocalconstraintfunctionvectorsforsubstruc-
tures 1 and 2 will be denotedas gl(Vl,U1) and
g2(v2,U2),respectively.ThevectorsVl andv2 are
vectorsofsizingvariablesforthetwosubstructures.In
general,the constraintfunctionvectorfor the second
substructureisexpressedbytherelationg2(v2,U2)=
g2 (v2, u2 + R2a2), but, because stress is invariant with

respect to rigid body motions, it simplifies to g2(v2, u2)

for local strength and buckling constraints. The ap-

proach to forming the decomposed optimization prob-

lem is as follows: 1) express the optimal design prob-
lem as a simultaneous analysis and design problem us-

ing necessary conditions (5) for the previously derived
structural-response method as additional constraints;

2) determine the necessary condition equations for this

simultaneous analysis and design problem; 3) reduce the

necessary condition equations for the sizing variables of
each substructure to a form which has a contribution

from the local substructure and a term representing
coupling to other substructures; and 4) treat these re-

duced necessary condition equations as if they are from

an EP problem, and transform the reduced necessary

condition equations to a set of EP subproblems and a

structural-sizing coordination subproblem.

problem to be solved is given by

min W1 (vl)+W2(v2)
(vl,v_,Ut,u2,a_,A,_)

gl(Vl,U1) _< 0

g2(v2, u2 + R2a2) _< 0

KI(Vl)U1 - F1 + BTA = 0

BIU1 + B2(u2 + R2a_) = 0

#=0

(II)

where the weights W1 and W2, and the stiffness ma-

trices of the two substructures are explicit functions of
the sizing variables as shown, and the third equation in

necessary conditions (5) is replaced with the equivalent

condition/_ = 0.

Necessary Conditions. The Lagrangian func-
tion for this optimization problem is

L =Wl(Vl) + W2(v2) + "),Tgl (Vl, U1)

+ 7Tg2(v2, u2 + R2a2)

+VT (Kl(vl)Vl- F 1 + BT)_)

+ 6T (B1U1 + B2(u2 + R2ot2)) + 17T_u

(12)

Simultaneous Analysis and Design For-

mulation. The optimal design problem is posed using
the simultaneous analysis and design approach where

necessary conditions (5) that describe the structural

response are formulated as constraints. Thus, the

In this definition, the quantities "Yi, ui, 6, and r/are La-

grange multipliers for the constraints in statement (11).
Taking the derivatives of the Lagrangian function de-

fined in equation (12) with respect to the design vari-

ables of the optimization problem in statement (11)

gives the following equations which are part of the set

4



of necessaryconditions equationinnecessaryconditions(13)

0W2
0v2

0W_.__!l T 0gl _ 0T
C0Vl + "/1 _11 + vlTOK1U10v1

TOg2. TOf_2[uTIOT]T = 0T
-- + "/2 _ + v2 Ov 2

_/T 0gl vTK1 _TB1 0T
i_-_i+ + =

L [0] j +STB2=

T 092 R2 0 T
")'2_ + _TB2R2 --

1:0 L[0]

vTk2 [ [0] ]_ _ + r/T = 0T

Iqxq

(13)

where Ir×r is the identity matrix of dimension r, p

is the number of degrees-of-freedom for the structural

response of substructure 2, q is the number of rigid body

modes for substructure 2, and the relation # -- 0 has
been utilized.

The sensitivity relations for equations (7) and (8)

with respect to the sizing variables will be necessary for

continuing the derivation. These relations are expressed

by

°oK1U1 _ T d_0v---_ + K1 _ + B 1 _ = [0]

0v2 + R2 + = [0]
[0] A L [0_

(14)
Using equations (14), the sensitivity derivatives of the

structural response holding the interactions between the

substructures fixed (i.e., fixed X) are

dU1 A 0KIU1dv 1 =-K11 0V 1

(15)

Although the total derivative d_/dv2 is identically
equal to zero as indicated in equations (14), the re-

stricted derivative dD/dv2 I,x in definitions (15) is not.

Reduction of Necessary Conditions. Pro-

ceeding with the reduction of the necessary conditions,
the Lagrange multipliers v I are obtained from the third

_ (_T 0gl + 6TB1)V T = _kll _ K11
(16)

and the Lagrange multipliers v2 are obtained by com-

bining the fourth and last equations in necessary con-

ditions (13)

[ ,.),T 0g2 T ] -vT=-- L 2 _2u2 +_TB2 1 _72 K2 1 (17)

Substituting equations (16) and (17) into the first and

second equations of necessary conditions (13), respec-

tively, and utilizing definitions (15), gives two of the

reduced necessary conditions

+

OW2 ( 0g2
Ov--7+'Yf \ _--_

du2
+6TB2 _

0gl dU1 )
0U1 dvl A

dU1 ;=0 T+_TB1

cog2 du2 )+ 0u2 dv2 A

+ rlT d___._ = 0T
av2 A

(18)

The final step in reducing the necessary condition equa-

tions is to find expressions for 5 and 7/2. Substituting

equations (16) and (17) into the sixth equation in nec-
essary conditions (13), and defining the quantity f12 =

--[RTR2]-I r12 which implies that _TTrR T-2L 2][o]]=
'tiT [ [0] I Iqxq]K21 , the following expression is obtained

[B1K IBI +,o2,0,,  iEB2,0,,T],B2R2, 
=_ 7T 0[

_T Ogl ..-IBT
-- Ii _i_I

T

(19)

Combining this equation with the fifth equation in

necessary conditions (13) gives the following equation



for _ and//2 equations(18),andisgivenbythestatement

[:]M =

-
T-

(20)

The matrix M in equation (20) is the same matrix

defined in equation (10).

Transformation to EP Subproblerns. The

reduced necessary condition equations (18) can be

transformed into EP subproblems having these equa-

tions as their necessary conditions. Four types of

subproblems result: structural-response subproblems,

structural-sizing subproblems, a structural-response co-

ordination subproblem, and a structural-sizing coor-
dination subproblem. Only the structural-sizing sub-

problems are actually transformed into constrained-

minimization problems. The first step in these trans-

formations is to define approximate models for U1 and

u2 that do not consider coupling of the substructures.

To fulfill the EP necessary conditions, the approximate

models for U1 and u2 must have the same values and

the same sensitivity derivatives as the exact responses

for the optimal values of the sizing variables. To solve
the individual subproblems efficiently, only simple mod-

els that are explicit functions of the subproblem sizing

variables are considered. Although many approximate

models are possible (see ref. 6), a simple first-order Tay-

lor series is used in the present derivation. The approx-

imate models are defined by

u1A(v1) ---- dV'_vll A (vl -- _'I) q- Vl

du2 X

(21)

where the displacements with the caret accents and the

restricted derivatives in equations (21) are calculated

at specific values of the sizing variables denoted by
-_i. Also for compactness, the dependence on these

previously calculated values are not explicitly given in

the function arguments. With these definitions, two

EP structural-sizing subproblems can be formed that

have reduced necessary condition equations (18) as their

necessary conditions. The EP subproblem for the first
substructure is developed from the first equation in

min Wl(Vl) q- STB1UA(vl)
Vl

gl(vl,U¢(Vl)) < 0
(22)

where the Lagrange multipliers for gl are "71. Simi-
larly, the structural-sizing subproblem for the second

substructure is developed from the second equation in

reduced necessary conditions (18), and is given by the
statement

minW2(v2)v2+ 6TB2uA(v2) + wT d_v_2 A

g2(v2,u (v2)+ R2a2)_<o

V2
(23)

where the Lagrange multipliers for g2 are "72. Equa-

tion (20) is the coordination subproblem that deter-

mines the penalty coefficients 6 and r12 = -RTR2 _/2
by utilizing the Lagrange multipliers determined from

solving the subproblems given by statements (22) and

(23). The structural response is given by solving equa-

tions (7), (8), and (9), and the restricted derivatives are
given by definitions (15).

Discussion

Summarizing the salient features of the present
method, a set of interacting EP subproblems, each as-

sociated with a particular substructure except for two

coordination subproblems, is iteratively solved until

the equilibrium solution is achieved. The structural-

response subproblem for each substructure is indepen-

dent of the structural response of the rest of the struc-

ture because the coupling of the structural-response

subproblems is achieved using a set of Lagrange mul-
tipliers which represent forces between the substruc-

tures. A computational advantage is obtained be-

cause the expensive factorization of matrices can be

done in parallel for each substructure. The Lagrange

multipliers representing the forces between substruc-

tures, and the substructure rigid body modes are de-

termined within a structural-response coordination sub-
problem. The optimization of substructures that have
constraints that are local to a substructure is accom-

plished in structural-sizing subproblems in a manner so

that the individual substructure optimizations are in-

dependent of each other, and can be accomplished in

parallel. The computational efficiency is enhanced be-
cause the only structural-response sensitivity derivative

information required is local to the substructure being

optimized. The penalty terms in each structural-sizing

subproblem that represent the coupling of the substruc-

ture optimizations ensure that the overall design is op-

timal. Additional computational advantages may be



accruedbecausethe calculationof the coefficientsfor
thesepenaltytermsis donein astructural-sizingcoor-
dinationsubproblemthat utilizesthesamematrixuti-
lizedin thestructural-responsecoordinationsubprob-
lem. Theapproximateupdatedsensitivityderivative
methodreportedin reference7 mayproveto enhance
furtherthecomputationalefficiencyof themethod.

Severalaspectsofthedecompositionmethodrequire
furtherresearch.Oneaspectthatneedsattentionisthe
translationof thetheoryderivedin thepresentreport
intoaviablenumericalalgorithm.Thistranslationim-
pliestheneedformethodsto formandfactortheaug-
mentedstiffnessmatricesof thesubstructures,andto
formand factorthe couplingmatrixM that is nec-
essaryfor calculatingthesubstructureinterfaceforces
andrigid bodymodes,andthepenaltytermsof the
structural-sizingsubproblems.In addition,although
severalEPtheoremsmayproveexistenceof asolution,
in practicethesubstructuraloptimizationswill require
rationalselectionsof movelimits on the sizingvari-
ables,andastrategyfordealingwithsubproblemshav-
ingno feasiblesolution(amodificationof themethod
describedin reference6that includesa constraintvio-
lationpenaltyforeachstructural-sizingsubproblemis
presentlyenvisioned).Also,thestabilityof thesolu-
tion process,andthe convergenceto theequilibrium
solutionneedsto bestudied. Anotherareaof inter-
estis theextensionof the methodto constraintsthat
aremoregeneralthanconstraintswhicharelocalto a
substructure.Theutilizationof parallelcomputersto
implementthemethodalsorequiresinvestigation.

Conclusions

A newmethodforstructuralanalysisandstructural
optimizationutilizingasubstructure-baseddecomposi-
tionhasbeenderivedindetailfortwosubstructuresand
extendedfor multiple substructures. Because the start-

ing point for the decomposition is a simultaneous design
and analysis formulation of the design problem, the so-

lution to the resulting decomposed system of subprob-

lems is optimal. The final form of the design decompo-

sition is a set of loosely coupled subproblems that de-

fine an Equilibrium Programming (EP) problem. Thus,
existence of a solution to the decomposed system can

be studied utilizing EP existence theorems. All of the

structural-response subproblems for the substructures

can be solved independently of each other, as can all of

the structural-sizing subproblems. Thus, significant po-

tential exists for the development of a parallel solution
method that utilizes this decomposition of the optimal

design problem to reduce the solution time for large

problems.



Appendix

Extension of Method to Multiple Substructures

Assume that there are n substructures, and that m substructures (0 < m _< n) have rigid body modes when

separated from the rest of the structure. The ni displacement degrees-of-freedom of substructure i are denoted by

Ui = (U/l,..., Uin i)7". The substructures having rigid body modes are ordered to be the last m substructures. These

substructures have displacements denoted by Ui = ui +Riai where R/is the matrix containing the rigid body modes
of substructure i, and RTui = 0. The equivalencing of degrees-of-freedom at common interface nodes in the different

substructures is represented by the set A of n I 4-tuples defined by A = { (j, k,p, q) I J < k and Ujp -- Ukq }. In
the definition of set A, redundancies in the equivaiencing of degrees-of-freedom are omitted. For example, a degree-

of-freedom shared by three substructures need only be equivalenced between two pairs of substructures, not all

three pair-wise combinations. The compatibility constraint equations (i.e., the equations that enforce compatibility

between the substructures) are defined by assigning an order to the elements of set A that corresponds to the order
of the compatibility constraint equations. Thus, the r th compatibility constraint equation will depend on degrees-

of-freedom in substructure j if either the first or second element of the r th 4-tuple in A is j. These compatibility

constraint equations are expressed explicitly by defining the signed Boolean matrices Bj for j = 1,..., n which have

dimensions n I × nj. Matrix Bj has a 1 at location rp if the r th 4-tuple in A has the components (j, .,p, .), and it

has a -1 at location rq if the r th 4-tuple in A has the components (.,j, .,q). Otherwise, the entries in matrix Bj
are zero. Thus, the compatibility constraint equations for all the substructures are symbolically represented by the
system of n I equations:

n

 B,Vi =0 (A1)
,=1

The definition of the Boolean matrix Bj in the present section reduces to the previous definition of the Boolean
matrix for the case of only two substructures.

Decomposition of the Structural Response

Utilizing the previously described definitions, the minimization problem for the structural response given by
statement (4) generalizes to:

min
(U1 ..... U ....

Un-m+l,...,Un,

O(n--rr_+ 1 ,...,O(n)

Z _Ui KiUi- FTui + _u i Kiui- +
i=1 i=n-rn + l

n--m n

i=1 j=n-m+l

Riui = 0 for i=n-m+l,...,n

(A2)

The necessary conditions for the minimization problem given by statement (A2) are

I_ i

KiUi - Fi + BT_ = 0

- 0 =0

IIT (Fi - BTA) = 0

for i = l, . . . , m - n

for i = n- m + 1,...,n (A3)

for i=n-m+ l,...,n

along with the first constraint equation given in statement (A2). Here A are the Lagrange multipliers corresponding
to the first constraint equation in statement (A2), Di are the Lagrange multipliers for the last constraint equation



in statement(A2),andthematrixI_i for i = n - m + 1,..., n is the augmented stiffness matrix given by

Ri= '- _

l(0l
I

(A4)

Using the second equation in necessary conditions (A3), the condition RTKi = [0] for i = n - m + 1,..., n, and

the fact that the columns of lCti are linearly independent, the last equation in necessary conditions (A3) implies that

the Lagrange multipliers tti are equal to zero. The structural responses Ui for i = 1,..., n -m, and (ui,/.ti) for

i = n - m + 1,..., n are found by solving the first and second equations of necessary conditions (A3), respectively,
after the vector ,k is determined.

The vector ,k must be determined simultaneously with the rigid body displacements _i for i = n - m +

1,..., n. This solution is accomplished by substituting the symbolic solutions for Ui and u/ into the compatibility

constraint equation in statement (A2), and solving this equation simultaneously with the last equation in necessary

conditions (A3). The following matrix equation gives the resulting system:

M

Otn--rn+ l

Otn--m+2

O/n

En--lm BiK_-IFi + Ein__n_m+l [Bi l[0] ]I_-I [F T 10T] T"
T

-- Rn_m+lFn_rn+l

T
-- Rn_m+2Fn_m+ 2

- l Fn

(A5)

where the matrix M is given by

__n-m B K- 1BT+i=1 i i i

Ein__n_m+l [Bi l[0] ] I_i-1 [ gi l[0l ]Z

I

-Bn-m+lP_-m+l I -Bn-m+21:Ln-m+2
• .o

I
- (Bn_m+l rt__m+l) r [01 I [0] .•. [0]

-(B,_m+21__m+2) r [01 [0] ..• [01

• . . . .

-Bnl_

-(Bnl_n) T [o] [o]

Equations (A5) and (A6) are the generalizations of equations (9) and (10) for multiple substructures.

[0]
(A6)

Structural Optimization with Constraints Local to the Substructures

As in the two-substructure example, only constraints that are local to the substructures (i.e., that can be expressed

using constraint functions of the form gi(vi,Ui) for i = 1,...,n) are considered in the structural optimization

process• The steps utilized when there are multiple substructures are nearly identical to those performed for the

two-substructure example. The simultaneous analysis and design formulation is a generalization of the problem of

9



statement (11)
n

min E Wi(vi)
(Vl,...,Vn, i=1

Ul,...,Un-m,

Un--rn+l,...Un_

Otn--m+ l ,...,OLn ,

A,_n--rn+l ..... #n)

gi(vi,Ui) < o

gi(vi, ui + P_ai) - 0

Ki(vi)Ui - Fi + BT,_ = 0

[u;1Ri(vd - = o

for i=l,...,n-m

for i=n-m+ l .... ,n

for i=l,...,n-m

for i=n-m+ l,...,n

(AT)

n-m n

BiUi + _ Bj(uj + Rjaj) = 0

i=l j=n-m+l

/_i =0

The Lagrangian function for this optimization problem is defined as

for i=n-m+l,...,n

n n--m

L =EWi(vi)+ E "yTgi(vi'Ui) +
i=1 i=1

E T V7i gi( i,ui + P,4ad
i=n-m+ l

n-m n ( [u,]
i=1 i=n-m+ l _i

(
\ i=1 j=n-m+l i=n-rn+l

_ [Fi-oBT)_" ) (A8)

and the following equations result from the optimality necessary conditions:

OWi ..yTOgi + T OKiUi = 0 T
Ov----(+ ' Ov_ v, Ov--_i

ow_o_, +_'_°g'_ +Cog,[uT'o_]_Ov,' = °_

T Ogi vTKi 6TBi oT
i "_i + + =

' Oui L [0] J +6TBi=

_T Og___}__.+ 6TBiRi = oT
Oui r%

E, _TBT+ E "_ = o_
i=i i=n-m+l [01 ]

k lq, × q,

for i=l,...,n-rn

for i=n-m+l,...,n

for i = 1,...,n- m

for i = n - m + l, . . . , n

for i = n - m + l, . . . , n

for i=n-m+l,...,n

(A9)

where Pi is the number of degrees-of-freedom for the structural response of substructure i, and qi is the number

of rigid body modes in substructure i. This system of equations generalizes necessary conditions (13), and the

10



constraint Di ----0 for i = n - m + 1,... ,n has been applied. The sensitivity derivatives of the structural response

holding the interactions between the substructures fixed (i.e., fixed ,_) are defined as in definitons (15)

)_ OKiUi
dUi = _K._a
dvi Ovi

du" oT ] T

AJ -I_lOI_i[uflov i

for i = l, . . . , n - m

for i=n-m+l,...,n

(A10)

The Lagrange multipliers vi are obtained from the equations in necessary conditions (A9)

vT = f T Ogi )-- _"li _ + 6TBi Ki -1

(=- L ' Oui + $TBi ] K( 1

for i=l,...,n-m

for i=n-m+l,...,n

(All)

which are utilized with definitions (A10) to simplify the first two equations in necessary conditions (A9)

OWi +..tT ( Ogi Ogi dUi )Ovi \Ovi + OUi dvi A

+6TB i dVi = oT
dvi

OWi ( Ogi Ogi dui )av---_ + 7T \ Ov i + Oui dvi A

dui A dDi = OT+6TBi _ +_TT dvi A

for i=l,...,n-m

for i=n-m+ l,...,n

(A12)

As in the case of only two substructures, the final step is to determine values for 6 and r/i for i = n-m+1,..., n. One

equation necessary for determining these quantities is found by substituting expressions for vi from equations (A11)

into the sixth equation in necessary conditions (A9). The resulting equation becomes

]On-m+ l

On-m+1

•Ei=ln-mBiK-flBT + Ei=n_m+l[Bin ] [0] ] i_-i [ Bi l[0] ] T ]

-(Bn-m+lRn-m+l)T ] =
-(Bn'Rn) T (A13)

't2-- ITt n

E_ T Ogi .I-I,_T
-- "-Yi-_ilt_i Di -- E

i=1 i=n-m+l

where the quantities Oi for i = n - m + 1,... ,n are defined by 0i = - [RTRi] -1 rt_. Combining equation (A13)

with the fifth equation in necessary conditions (A9) yields the following equation that is solved to determine the

values for 6 and r/i for i = n - m + 1,..., n

• [ ] [ ]rin=-lmBiK_-I (,.yT_/) ___,in=n_m+l Bi][O] i_-1 ,.yi _i lO TTO"

[" T Ogn-m-{-1 ) TM On-m+1 = tTn-m+lOUn_m+ 1Rn-m+l. (A14)

TOn T

11



Formulation of Decomposition as an Equilibrium Programming Problem

The EP subproblems for n substructures are formulated by first defining approximate models for the displace-

ments of the substructures that do not consider coupling between substructures. For example, linear approximate

models may be used that have the form

CA(v,) = _v, (v_- _) + 0_ for / = 1,..., n - m
(A15)

_u,
uA(vi) = dvi ;_(vi-'¢i)+fii for i=n-m+l,...,n

where the variables having caret accents are as defined previously, and the restricted derivatives are given by

definitions (A10). These approximate models are utilized in formulating EP structural-sizing subproblems for the n

substructures whose necessary conditions are the same as the equations given in reduced necessary conditions (A12).

These structural-sizing subproblems are defined for the substructures having no rigid body modes (i.e., for

i = l,...,n- m) as

rain WI(Vi) + _TBiUA(vi)

v, (A16)

gi(vi, UA(vi)) < 0

The structural-sizing subproblems for the substructures that have rigid body modes (i.e., for i = n - m + 1,..., n)
are defined as

dui vi
minviW2(vi) + 6TBiuA(vi) + r$T dvi ,_ (A17)

gi(vi, uA(vi) + Rioq) <_ 0

The Lagrange multipliers for gi in both statements (A16) and (A17) are represented by the vectors 3'/ which

are needed to form the right side of equation (A14). The structural-sizing coordination subproblem given by
equation (A14) determines the quantities 6 and _i for i = n -- m + 1,...,n. The terms r/i are determined

from r/i = -RTRi /?i. The structural-response subproblems are given by the first two equations in necessary

conditions (A3), and the structural-response coordination subproblem is given by equation (A5).

12
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P
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binomial coefficient

average slope parameter of nucleon-nucleon scattering amplitude, fm 2
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energy, GeV or MeV

two-nucleon kinetic energy in their center-of-mass frame, GeV

defined by equation (3)

defined by equation (7)

total nuInbcr of projectile nucleus neutrons

number of abraded neutrons

probability that an abraded nucleon escapes without further
interaction

probability for not removing single nucleon by abrasion

two-nucleon relative position vector, fin

total number of projectile-nucleus protons

number of abraded protons

position vector of projectile along beam direction, fin

collection of constituent relative coordinates for target, fin

nuclear single-particle density, fm -3
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mean-free path, fm
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Abstract

Quantum-mechanical optical model methods for calculating cross

sections for the fragmentation of galactic cosmic ray nuclei by hy-
drogen targets are presented. The fragmentation cross sections are.

calculated with an abrasion-ablation collision formalism. Elemental

and isotopic cross sections are estimated and compared with mea-

sured values for neon, sulfur, and calcium ions at incident energies

between _00A MeV and 9IOA Me V. Good agreement between theory
and experiment is obtained.

Introduction

The fragmentation of galactic cosmic ray (GCR) nuclei in hydrogen targets is all important

physical process in several areas of space radiation physics research. In astrophysics, it is crucial

to understanding cosmic ray propagation and source abundances (ref. 1) because interstellar

hydrogen is the major type of material encountered by GCR nuclei traveling through the

universe. In studies of spacecraft shielding for interplanetary missions (ref. 2), hydrogen has

been found to be tile most effective GCR shield material per unit mass. In addition, hydrogen is

a major constituent of human tissue. Therefore, accurate cross sections are needed for properly

estimating GCR radiation exposures to critical body organs (ref. 3).

Previously, cross-section predictions used in these studies have been obtained from semi-

empirical formulations (refs. 4 to 7). The most commonly used formulation is the one by

Silberberg and collaborators (ref. 5). The most accurate formulation appears to be a recent

one by Webber and collaborators (ref. 6). None are based upon fundamental physics. All have

numerous parameters that are adjusted as necessary to fit existing measurements.

The production of fragments in peripheral, relativistic heavy ion collisions has been the

subject of numerous theoretical and experimental investigations for about 2 decades. Many of

these investigations were summarized in reviews published during this period (refs. 7 to 10).

Early attempts to explain fragmentation used statistical models (refs. 11 mid 12). These were

followed by a two-step abrasion-ablation model (ref. 13), which was based upon earlier work by

Serber in high-energy, inelastic nuclear collisions (ref. 14).

The main shortcoming associated with the use of early abrasion-ablation models for nuclear

fragmentation on hydrogen targets is the unrealistically large proton radius needed for the

prefragment excitation energy estimate. This radius is dictated by the reliance on excess surface

energy of the misshapen liquid drop as the only source of prefragment excitation.

This shortcoming in the model can be rectified by considering an abrasion-ablation

frictional-spectator-interaction (FSI) model where the abrasion stage is described by a quantum-

mechanical optical model forlnalism and the ablation stage is modeled with cascade-evaporation

techniques. There is no excess surface area energy. Instead, the prefragment excitation energy

is assumed to be provided by FSI contributions from tile abraded nucleons. This fragmentation

model is proposed in this report.

Abrasion-Ablation Models

In an abrasion-ablation model, the projectile nuclei, moving at relativistic speeds, collide

with stationary target nuclei. In the abrasion step (particle knockout), those portions of the

nuclear vohunes that overlap are sheared away by the collision. Tile remaining projectile piece,

called a prefragment, continues its trajectory with essentially its precollision velocity. Because of

the dynamics of the abrasion process, the prefragment is highly excited and subsequently decays



by the emissionof gammaradiationor nuclearparticles.This step is the ablationstage.The
resultantisotopeis the nuclearfragmentwhosecrosssectionis measured.Theabrasionstepis
often formulatedwith methodsobtainedfrom quantumscatteringtheory (refs.15and 16)or
with classicalgeometryarguments(refs.13and 17). The ablationstep is typically modeled
with compoundnucleusdecay(refs. 13 and 18) or combinedcascade-evaporation(ref. 19)
methods. Other approachesbasedupon nuclearWeiszgcker-Williamsmethods(ref. 20) and
nucleon-nucleoncascadeplusstatisticaldecaymodels(ref.21)havealsobeenproposed.

Althoughabrasion-ablationfragmentationmodelshavebeenquite successfulin predicting
fi'agmentproductioncrosssections,their predictiveaccuracyishamperedbytheneedto estimate
tile (unknown)prefragmentexcitationenergy. Variousmodelshavebeendevelopedfor this
purpose(refs.13,15,18,and 22). The mostwidelyusedexcitationenergyformalisin(ref. 13)
treatsthefragmentingnucleusasamisshapenliquid dropwhoseexcitationisgivenbytheexcess
surfaceenergyresultingfrom the abrasionstep. Although this methodworkedfairly well for
nucleus-nucleusfragmentations,its usein nucleus-hydrogencollisions,amongotherdifficulties,
requiredanartificially largeprotonradius(ref. 13).

When it was recognizedthat additional excitationenergywas requiredto improvethe
agreementbetweentheoryand experimentfor nucleus-nucleuscollisions,the conceptof FSI
energywasintroduced(ref.22). Thisconceptis baseduponthe assumptionthat someabraded
nucleonsarescatteredinto ratherthanawayfromtheprefragment,therebydepositingadditional
excitationenergy. This conceptsignificantlyimprovedthe agreementbetweentheory and
experiment.

Overthe past10years,wehaveformulatedanopticalmodelabrasion-ablationFSI descrip-
tion of fragmentationin relativisticnucleus-nucleuscollisionsthat is usedto predictfragment
productioncrosssections(refs. 16and 23 to 42) and momentumdistributionsof the emitted
fragments(refs.43through47). In the presentwork, this fragmentationmodelis modifiedto
makeit applicableto nucleus-nucleoncollisions.As previouslydiscussed,the mainshortcoming
associatedwith the useofearlyabrasion-ablationmodelsfor nuclearfragmentationonhydrogen
targetsis tile unrealisticallylargeprotonradiusneededfor the prefragmentexcitationenergy
estimate.Thisradiusisdictatedbytherelianceonexcesssurfaceenergyof themisshapenliquid
dropastheonly sourceof prefragmentexcitation.

Thisshortcomingin themodelcanberectifiedbyconsideringthephysicsofthefragmentation
process. For instance,a picture of overlappingnuclearvolumesbeingshearedoff may be
reasonablefor heavierImclei collidingwith eachother, but it is not reasonablefor a single
nucleonstrikinganothernucleus.Instead,amorereasonablephysicalpictureinvolvesindividual
collisionsbetweenthe projectileconstituentsand the target proton. Somestruck projectile
nucleonsexit thefragmentingnucleuswithoutfurther interaction,andsomeinteractoneor more
timeswith theremainingconstituents before departing. The remaining nucleus (prefragment), in

an excited state because of the energy deposited during the collision, then deexcites by particle-

or gamma-emission processes. This picture is e£sily described by an abrasion-ablation FSI model

where the abrasion stage is described by a quantum-mechanical optical model formalisIn and

the ablation stage is modeled with cascade-evaporation techniques. There is no excess surface

area energy. Instead, the prefragment excitation energy is assumed to be provided by FSI

contributions from tile abraded nucleons. This fragmentation model is proposed in this report.

Theory

In the nucleus-nucleus optical potential formalism (ref. 29), the cross section for producing,

by abrasion, a prefragment of charge ZpF and mass ApF is given by

aabr( ZpF'ApF) = ( N ) ( Z ) / d2b[1- T(b)]n+z[T(b)]ApFz (1)



where

and

T(b) = exp[-A T aNN(e)I(b)] (2)

I(b) = [2rrB(e)] 3/2 fd o fda(rpr((T)fd3ypp(b+zo+y+_T)exp[-y2/2B(e)] (3)

The nuclear number densities pi(i = P or T) are obtained from the appropriate charge densities

by an unfolding procedure (ref. 16). The constituent-averaged mlcleon-nucleon cross sections

aNN(e) are given in reference 48. Values for the diffractive nucleon-nucleon scattering slope

parameter B(e) are obtained from the parameterization in reference 49.

In equation (1) a hypergeometric charge dispersion model is chosen to describe the distribu-

tion of abraded nucleons. The model assumes that z out of Z projectile protons and n out of N

projectile neutrons are abraded where

N + Z = Ap (4)

ApF =Ap-n-z (5)

and ( A ) denotes the usual binomial coefficient expression from probability theory.

For nuclear collisions with hydrogen (proton) targets, the appropriate target number density

to use is given by the Dirae delta function

PT(_T) =- b(_T) (6)

Inserting equation (6) into equation (3) yields

Ip(b) = [27rB(e)] -3/2 / dzo / d3ypp(b + zo + y)exp[-y2/2B(e)] (7)

With A T = 1, equation (2) becomes

T(b) = exp[--aNN(e)Ip(b)] (8)

The nucleus-hydrogen abrasion cross sections are calculated with equations (1), (7), and (8).

Prefragment excitation energies are estimated from the FSI energy contribution

Eexc = EFSI (9)

which is calculated with the model of Rasmussen (ref. 22). With this model, the rate of energy

transfer to the prefragment is
dE E

- (10)
dx 4A

where

, (30°)-- aNN _ -- (11)
p_rN N



yields
dE
-- = -12.75 MeV/fm (12)
dx

If a spherical nucleus of uniform density is assumed, tile average energy deposited per

interaction is

{EFsI> _ 10.2A 1/3 MeV (13)

Therefore, tile abrasion cross section for a prefragment species (ZpF,ApF) which has

undergone q frictional spectator interactions is

aabr(ZpF, ApF, q) = (n + z) (1- Pesc)q(Pesc)n+z-qcrabr(ZpF,ApF)q (14)

where 0 _< q _< n + z, and Peso is tile probability that an abraded nucleon escapes without

undergoing any frictional spectator interactions (ref. 34). In this report, the choice of Peso = 0.5

follows from the original work of Rasmussen (ref. 22). Such a value assumes that the nuclear

surface has no curvature, and this value should be reasonably correct for heavy nuclei. For

lighter nuclei, the surface can exhibit significant curvature such that the value of Peso can I)e

larger than 0.5. Methods for estimating Pe._c when nuclear surface curvature is considered have

been formulated by Vary and collaborators (ref. 50).

Depending upon the magnitude of its excitation energy, the prefragment will decay by

emitting nucleons, composites, and gamma rays. The probability o_ij(q ) that a prefragment

species j, which has undergone q frictional spectator interactions, deexcites to produce a

particular final fragment' of type i is obtained with tile EVA-3 Monte Carlo cascade-evaporation

computer code (ref. 19). Therefore, the final hadronic cross section for production of the type i

isotope is obtained from

_+z

amlc(Zi'Ai) = Z Z °qJ (q)°'abr(Zj'Aj'q)

j q=0

(15)

where tile summation over j accounts for contributions from different prefragment isotopes j,

and the suuunation over q accounts for the effects of different FSI excitation energies. Finally,

the elemental production cross sections are obtained by summing all isotopes of a given element

according to

a,,uc(Zi) = Z Crnuc(Zi, Ai) (16)

Ai

Results

Figures 1 and 2 show isotope production cross sections obtained with equation (15) for 32S

beams at ,100A MeV fragmenting in hydrogen'targets. The figures also show recently reported

experimental results (ref. 51). For clarity, the experimental error bars are not plotted. The 32S

nuclear density used in the calculation was a Woods-Saxon form with skin thickness and half-

density radius obtained from reference 48. The agreement between theory and experiment is

quite good, especially considering that no arbitrary parameters are in the theory. Quantitatively,

a distribution analysis of the cross-section differences between theory and experiment finds that

32 percent agree within the experimental uncertainties, 50 percent agree within a 25-percent

difference, nearly 75 percent agree within a 50-percent difference, and over 82 percent agree
within a factor of 2.

Elemental production cross-section predictions obtained from equation (16) are displayed

in figures 3 to 8 for 2°Ne beams at 400A MeV and 910A MeV and for 32S and 4°Ca beams at



400A MeV and 800A MeV incident kinetic energies colliding with hydrogen targets. The nuclear

densities used in the calculations were Woods-Saxon forms with skin thicknesses and half-density

radii again obtained from reference 48. These experimental data were taken from reference 51.

Overall, the agreement between theory and experiment is good, although the theory tends to

predict values that are slightly larger than the reported mea,surements.
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Figure 1. Isotope production cross sections for 400A MeV 32S fragmentation in hydrogen targets for isotopes of P,
AI, Na, and F fragments.
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Figure 2. Isotope production cross sections for 400A MeV 32S fragmentation in hydrogen targets for isotopes of Si,
Mg, Ne, and O fragments.
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Figure 3. Element production cross sections for 400A MeV 2°Ne fragmentation in hydrogen targets.
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Figure 4. Element production cross sections for 910A MeV 2°Ne fragmentation in hydrogen targets.
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Figure 5. Element production cross sections for 400A MeV 32S fragmentation in hydrogen targets.

102

JD
E
c-
O

.[.,
o

101
O9
O9

o

O"

0

0

$ •
o

o o

$

o Experimental

• Theory

100 I , , , I , , , I , , , I
4 8 12 16

Fragment charge

Figure 6. Element production cross sections for 800A MeV 32S fragmentation in hydrogen targets.
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Figure 8. Element production cross sections for 800A MeV 4°Ca fragmentation in hydrogen targets.

Concluding Remarks

A simple, yet accurate, optical potential abrasion-ablation fragmentation model has been

developed for use in studies of galactic cosmic ray breakup on hydrogen targets. The model
has no arbitrarily adjusted parameters. Model predictions have good agreement with recent

laboratory measurements of elemental and isotopic production cross sections for the fragmenting

of neon, sulfur, and calcium beams on hydrogen targets.

NASA Langley Research Center

Hampton, VA 23681-0001

October 28, 1993
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